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Abstract. The decays Bd → π+π− and Bs → K+K− provide an interesting strategy to extract the CKM
angle γ at “second-generation” B-physics experiments of the LHC era. A variant for “first-generation”
experiments can be obtained, if Bs → K+K− is replaced by Bd → π∓K±. We show that the most recent
experimental results for the CP-averaged Bd → π+π− and Bd → π∓K± branching ratios imply a rather
restricted range for the corresponding penguin parameters, and upper bounds on the direct CP asymmetries
Adir

CP(Bd → π+π−) and Adir
CP(Bd → π∓K±). Moreover, we point out that interesting constraints on γ can

be obtained from the CP-averaged Bd → π+π− and Bd → π∓K± branching ratios, if in addition mixing-
induced CP violation in the former decay is measured, and the B0

d–B0
d mixing phase is fixed through

Bd → J/ψKS. An extraction of γ becomes possible, if furthermore direct CP violation in Bd → π+π− or
Bd → π∓K± is observed.

1 Introduction

Among the central targets of the B-factories is a measure-
ment of the time-dependent CP asymmetry of the decay
Bd → π+π− [1], which can be expressed as follows:

aCP(Bd(t) → π+π−)

≡ BR(B0
d(t) → π+π−) − BR(B0

d(t) → π+π−)

BR(B0
d(t) → π+π−) + BR(B0

d(t) → π+π−)

= Adir
CP(Bd → π+π−) cos(∆Mdt)

+Amix
CP (Bd → π+π−) sin(∆Mdt). (1)

Here Adir
CP(Bd → π+π−) and Amix

CP (Bd → π+π−) are due
to “direct” and “mixing-induced” CP violation, respec-
tively. In the summer of 1999, the CLEO collaboration
reported the first observation of the long-awaited Bd →
π+π− transition, with the following CP-averaged branch-
ing ratio [2]:

BR(Bd → π+π−)

≡ 1
2

[
BR(B0

d → π+π−) + BR(B0
d → π+π−)

]
=
(
4.3+1.6

−1.4 ± 0.5
)× 10−6. (2)

This channel usually appears in the literature as a tool
to determine the angle α = 180◦ − β − γ of the unitar-
ity triangle [3] of the Cabibbo–Kobayashi–Maskawa ma-
trix (CKM matrix) [4]. However, penguin topologies are
expected to affect this determination severely. Although
there are several strategies on the market to control these
penguin uncertainties [1], they are usually very challeng-
ing from an experimental point of view. Constraints on α
from Bd → π+π− were considered in [5]–[7].

In a recent paper [8], a strategy was proposed, where
Bd → π+π− is combined with its U -spin counterpart
Bs → K+K− [9] to extract φd = 2β and γ. If the phase-
convention independent quantity φd, which is related to
the B0

d–B
0
d mixing phase and can be determined straight-

forwardly with the help of the “gold-plated” mode Bd →
J/ψKS [10], is used as an input, the U -spin arguments
in the extraction of γ can be minimized. This approach,
which relies only on the U -spin flavour symmetry and is
not affected by any final-state-interaction effects [11], is
very promising for “second-generation” B-physics exper-
iments at hadron machines, such as LHCb or BTeV [12].
There is a variant of this strategy for the asymmetric e+e−
B-factories operating at the Υ (4S) resonance (BaBar and
BELLE), where Bs decays cannot be explored, if Bs →
K+K− is replaced by Bd → π∓K±, and a certain dy-
namical assumption concerning “exchange” and “penguin
annihilation” topologies is made. Although Bs → K+K−
should be accessible at HERA-B and Run II of the Teva-
tron, a measurement of Bd → π∓K± may be easier for
these “first-generation” hadronic B experiments. At
HERA-B, for instance, one expects to collect 260 and 35
decay events per year of Bd → π∓K± and Bs → K+K−,
respectively [13]. The present result for the CP-averaged
Bd → π∓K± branching ratio from the CLEO collabora-
tion is as follows [2]:

BR(Bd → π∓K±)

≡ 1
2

[
BR(B0

d → π−K+) + BR(B0
d → π+K−)

]
=
(
17.2+2.5

−2.4 ± 1.2
)× 10−6; (3)
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a first result for the corresponding direct CP asymmetry
is also available [14]:

Adir
CP(Bd → π∓K±)

≡ BR(B0
d → π−K+) − BR(B0

d → π+K−)

BR(B0
d → π−K+) + BR(B0

d → π+K−)
= 0.04 ± 0.16 . (4)

In this paper, we point out that the CLEO results
(2) and (3) imply – among other things – a rather re-
stricted range for the ratio of the “penguin” to “tree” con-
tributions of the decay Bd → π+π−, and upper bounds
on the direct CP asymmetries Adir

CP(Bd → π+π−) and
Adir

CP(Bd → π∓K±). If in addition mixing-induced CP vio-
lation in Bd → π+π− is measured and φd is fixed through
Bd → J/ψKS, we may obtain moreover interesting con-
straints on γ. An extraction of this angle becomes possible,
if direct CP violation in Bd → π+π− or Bd → π∓K± is
observed.

The outline of this paper is as follows: in Sect. 2, we
have a brief look at the general structure of the relevant
decay amplitudes and observables. The constraints on the
penguin parameters and the direct CP asymmetries are
discussed in Sect. 3, whereas the bounds on γ are the
subject of Sect. 4. Finally, the conclusions and an outlook
are given in Sect. 5.

2 Decay amplitudes and observables

The transition amplitude of the b̄ → d̄ decay B0
d → π+π−

can be written as follows [15]:

A(B0
d → π+π−) = λ(d)

u

(
Au

cc +Au
pen
)
+ λ(d)

c Ac
pen

+λ
(d)
t At

pen , (5)

where Au
cc is due to “current–current” contributions, the

amplitudes Aj
pen describe “penguin” topologies with in-

ternal j quarks (j ∈ {u, c, t}), and the

λ
(d)
j ≡ VjdV

∗
jb (6)

are the usual CKM factors. Making use of the unitarity of
the CKM matrix and applying the Wolfenstein
parametrization [16], generalized to include non-leading
terms in λ [17], yields [8]

A(B0
d → π+π−) = eiγ

(
1 − λ2

2

)
C [1 − d eiθe−iγ

]
, (7)

where
C ≡ λ3ARb

(
Au

cc +Aut
pen
)
, (8)

with Aut
pen ≡ Au

pen − At
pen, and

d eiθ ≡ 1
(1 − λ2/2)Rb

(
Act

pen

Au
cc +Aut

pen

)
. (9)

The quantity Act
pen is defined in analogy to Aut

pen, and the
CKM factors are given as usual by λ ≡ |Vus| = 0.22, A ≡
|Vcb|/λ2 = 0.81±0.06 and Rb ≡ |Vub/(λVcb)| = 0.41±0.07.
The “penguin parameter” d eiθ, which measures – sloppily
speaking – the ratio of the Bd → π+π− “penguin” to
“tree” contributions, will play a central role in this paper.

Using the Standard-Model parametrization (7), we ob-
tain [8]

Adir
CP(Bd → π+π−) = −

[
2 d sin θ sin γ

1 − 2 d cos θ cos γ + d2

]
(10)

Amix
CP (Bd → π+π−) = (11)

+
[
sin(φd + 2γ) − 2 d cos θ sin(φd + γ) + d2 sinφd

1 − 2 d cos θ cos γ + d2

]
,

where φd = 2β can be determined with the help of the
“gold-plated” mode Bd → J/ψKS through

Amix
CP (Bd → J/ψKS) = − sinφd. (12)

Strictly speaking, mixing-induced CP violation in Bd →
J/ψKS probes φd + φK , where φK is related to the weak
K0–K0 mixing phase and is negligibly small in the Stan-
dard Model. Due to the small value of the CP-violating
parameter εK of the neutral kaon system, φK can only be
affected by very contrived models of new physics [18].

In the case of Bs → K+K−, we have [8]

A(B0
s → K+K−)

= eiγλ C′
[
1 +

(
1 − λ2

λ2

)
d′eiθ′

e−iγ

]
, (13)

where
C′ ≡ λ3ARb

(
Au′

cc +Aut′
pen

)
(14)

and

d′eiθ′ ≡ 1
(1 − λ2/2)Rb

(
Act′

pen

Au′
cc +Aut′

pen

)
(15)

correspond to (8) and (9), respectively. The primes remind
us that we are dealing with a b̄ → s̄ transition. It should
be emphasized that (7) and (13) are completely general
parametrizations of the B0

d → π+π− and B0
s → K+K−

decay amplitudes within the Standard Model, relying only
on the unitarity of the CKM matrix. In particular, these
expressions take into account also final-state-interaction
effects, which received a lot of attention in the recent lit-
erature [11].

Since the decays Bd → π+π− and Bs → K+K− are re-
lated to each other by interchanging all down and strange
quarks, the U -spin flavour symmetry of strong interactions
implies

d eiθ = d′eiθ′
. (16)

Interestingly, this relation is not affected by U -spin
-breaking corrections within a certain model-dependent
approach (a modernized version of the “Bander–
Silverman–Soni mechanism” [19]), making use – among
other things – of the “factorization” hypothesis to esti-
mate the relevant hadronic matrix elements [8]. It would
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be interesting to investigate the U -spin-breaking correc-
tions to (16) also within the “QCD factorization” ap-
proach, which was recently proposed in [20]. In this pa-
per, it was argued that there is a heavy-quark expan-
sion for non-leptonic B-decays into two light mesons, and
that non-factorizable corrections, as well as final-state-
interaction processes, are suppressed by ΛQCD/mb. We
shall come back to this approach in Sect. 3, where a com-
parison of its prediction for the penguin parameter d eiθ is
made with the constraints that are implied by the CLEO
results (2) and (3).

For the following considerations, it is useful to intro-
duce the observable

H ≡ 1
ε

∣∣∣∣C′

C
∣∣∣∣
2 [

MBd

MBs

Φ(MK/MBs ,MK/MBs)
Φ(Mπ/MBd

,Mπ/MBd
)

τBs

τBd

]

×
[
BR(Bd → π+π−)
BR(Bs → K+K−)

]
, (17)

where

ε ≡ λ2

1 − λ2 , (18)

and
Φ(x, y) ≡

√
[1 − (x+ y)2] [1 − (x − y)2] (19)

denotes the usual two-body phase-space function. The CP-
averaged branching ratio BR(Bs → K+K−) can be ex-
tracted from the corresponding “untagged” rate [8], where
no rapid oscillatory ∆Mst terms are present [21]. In the
strict U -spin limit, we have |C′| = |C|. Corrections to this
relation can be calculated within the “factorization” ap-
proximation, yielding∣∣∣∣C′

C
∣∣∣∣
fact

=
fK

fπ

FBsK(M2
K ; 0+)

FBdπ(M2
π ; 0+)

(
M2

Bs
− M2

K

M2
Bd

− M2
π

)
, (20)

where fK and fπ denote the kaon and pion decay con-
stants, and the form factors FBsK(M2

K ; 0+) and
FBdπ(M2

π ; 0
+) parametrize the hadronic quark-current

matrix elements 〈K−|(b̄u)V−A|B0
s 〉 and 〈π−|(b̄u)V−A|B0

d〉,
respectively [22]. If we employ (7) and (13), we obtain the
expression

H =
1 − 2 d cos θ cos γ + d2

ε2 + 2 ε d′ cos θ′ cos γ + d′2 , (21)

which will play a key role in the following sections. Let us
also note that there is an interesting relation between H
and the corresponding direct CP asymmetries [8]:

Adir
CP(Bs → K+K−)

= − εH

(
d′ sin θ′

d sin θ

)
Adir

CP(Bd → π+π−). (22)

Since the decays Bs → K+K− and Bd → π∓K± differ
only in their spectator quarks, we have

Adir
CP(Bs → K+K−) ≈ Adir

CP(Bd → π∓K±) (23)

BR(Bs → K+K−) ≈ BR(Bd → π∓K±)
τBs

τBd

, (24)

and obtain

H ≈ 1
ε

(
fK

fπ

)2 [ BR(Bd → π+π−)
BR(Bd → π∓K±)

]
= 7.4 ± 3.0. (25)

Here we have also taken into account the CLEO results
(2) and (3), and have added the experimental errors in
quadrature. The advantage of (25) is that it allows the
determination of H without a measurement of the decay
Bs → K+K−. However, it should be kept in mind that
this relation relies not only on SU(3) flavour-symmetry
arguments, but also on a certain dynamical assumption.
The point is that Bs → K+K− receives also contributions
from “exchange” and “penguin annihilation” topologies,
which are absent in Bd → π∓K±. It is usually assumed
that these contributions play a minor role [23]. However,
they may be enhanced through certain rescattering effects
[11]. Although these topologies do not lead to any prob-
lems in the strategies discussed below if H is fixed through
a measurement of Bs → K+K− – even if they should
turn out to be sizeable – they may affect (23)–(25). The
importance of the “exchange” and “penguin annihilation”
topologies contributing to Bs → K+K− can be probed –
in addition to (23) and (24) – with the help of the decay
Bs → π+π−. The näıve expectation for the correspond-
ing branching ratio is O(10−8); a significant enhancement
would signal that the “exchange” and “penguin annihila-
tion” topologies cannot be neglected. Another interesting
decay in this respect is Bd → K+K−, for which already
stronger experimental constraints exist [24].

3 Constraining the penguin parameters
and the direct CP asymmetries

If we make use of (21) and apply the U -spin relation (16),
the observable H allows us to determine the quantity

C ≡ cos θ cos γ (26)

as a function of d:

C =
a − d2

2 b d
, (27)

where

a =
1 − ε2H

H − 1
and b =

1 + εH

H − 1
. (28)

In [25], a similar function of strong and weak phases was
considered for the Bd → π∓K±, B± → π±K system,
and it was pointed out that this quantity plays an impor-
tant role to derive interesting constraints. Since C is the
product of two cosines, it has to lie between −1 and +1,
thereby implying an allowed range for d. If we take into
account (27) and (28), we obtain (for H < 1/ε2)

1 − ε
√
H

1 +
√
H

≤ d ≤ 1 + ε
√
H

|1 − √
H| . (29)
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An alternative derivation of this range can be found in [7].
In the special case of H = 1, there is only a lower bound
on d, which is given by dmin = (1 − ε)/2; for H < 1, C
takes a minimal value that implies an allowed range for γ:

| cos γ| ≥ Cmin =

√
(1 − ε2H)(1 − H)

1 + εH
≈ √

1 − H. (30)

From a conceptual point of view, this bound on γ is com-
pletely analogous to the one derived in [25]. Unfortunately,
it is only of academic interest in the present case, as (25)
indicates H > 1, which we shall assume in the following
discussion. So far, we have treated θ and γ as “unknown”,
free parameters. However, for a given value of γ, we have

−| cos γ| ≤ C ≤ +| cos γ|, (31)

and obtain constraints on d that are stronger than (29):

dmax
min = ±b| cos γ| +

√
a+ b2 cos2 γ. (32)

In Fig. 1, we show the dependence of C on d for the
values of the observable H given in (25). Interestingly, the
large values of H imply a rather restricted range for d.
In particular, we get the lower bound d ≥ 0.2. The “di-
amonds” in Fig. 1 represent the results obtained within
the “QCD factorization” approach [20], representing the
state-of-the-art technology in the calculation of the pen-
guin parameter d eiθ:

d eiθ
∣∣
QCD−fact = 0.09 [0.18] ei 193 [187]◦ . (33)

Here a certain formally power-suppressed contribution,
which is “chirally enhanced” through the factor

rχ =
2M2

π

(mu +md)mb
, (34)

has been neglected [included at leading order]. The “error
bars” in Fig. 1 correspond to the presently allowed range
for γ that is implied by the usual “indirect” fits of the
unitarity triangle [26]:

36◦ ≤ γ ≤ 97◦, (35)

and the “diamonds” are evaluated with (33) for the pre-
ferred (central) value of γ = 62◦. The horizontal dotted
lines in Fig. 1 represent C = ± cos 36◦. It is an interest-
ing feature of the contours in the d–C plane that they
allow in principle the determination of cos γ with the help
(33), i.e. if d and θ are known. However, as can be seen
in Fig. 1, the most recent CLEO data on Bd → π+π−
and Bd → π∓K± are not in favour of an interpretation
of the “QCD factorization” result (33) within the Stan-
dard Model; a solution could be obtained for d ≈ 0.2 and
C ≈ 1. However, since (33) gives cos θ ≈ −1, we would
then conclude that cos γ ≈ −1, which would be in con-
flict with the Standard-Model range (35). Arguments for
cos γ < 0 using B → PP , PV and V V decays were also
given in [27].

Before we discuss the origin of a possible discrepancy
of the “QCD factorization” results with the contours in
the d–C plane, let us have a closer look at the impact of
corrections to (16). To this end, we generalize this relation
as follows:

d′ = ξ d, θ′ = θ +∆θ, (36)

yielding

C ≡ cos θ cos γ

=
(

1
1 + u2

)

×

 a − d2

2 b d
± u

√
(1 + u2) cos2 γ −

(
a − d2

2 b d

)2

, (37)

where a and b correspond to the following generalization
of (28):

a =
1 − ε2H

ξ2H − 1
, b =

1 + ε ξH cos∆θ

ξ2H − 1
, (38)

and

u =
ε ξH sin∆θ

1 + ε ξH cos∆θ
. (39)

Since the parameter u is doubly suppressed by ε and ∆θ,
it is a small quantity. In the case of ∆θ = 20◦, ξ = 1 and
H = 7.4, we have, for example, u = 0.10. In Fig. 2, we
illustrate the impact of ξ �= 1 and ∆θ �= 0 on the contour
in the d–C plane corresponding to H = 7.4. In contrast
to (27), the general expression (37) depends also on the
CKM angle γ for ∆θ �= 0. However, since the major effect
in Fig. 2 is due to possible corrections to d′ = d, we shall
assume θ′ = θ in the remainder of this paper. In this case,
(37) takes the same form as (27).

Although it is too early to draw any definite conclu-
sions, let us note that there would be basically two dif-
ferent explanations for a discrepancy of the “QCD factor-
ization” results with the contours shown in Figs. 1 and 2:
hadronic effects or physics beyond the Standard Model.
Concerning the former case, the ΛQCD/mb terms and the
“chirally enhanced” contributions may actually play an
important role. Interestingly, the inclusion of the latter
ones at leading order shifts the value of d in the right di-
rection. In order to get the full picture, it would be an
important task to analyse (20) and (36) in the “QCD fac-
torization” approach. Using present data, it seems that
the “QCD factorization” results (33) can only be accom-
modated – if at all possible – for values of γ sizeably larger
than 90◦, which would be in conflict with (35), and a pos-
sible sign for new physics. Since the parameter d eiθ is
governed by penguin topologies, i.e. by flavour-changing
neutral-current (FCNC) processes, it may well be affected
by physics beyond the Standard Model [28,29]. Moreover,
it should be kept in mind that the unitarity of the CKM
matrix has been used in the calculation of the contours
shown in Figs. 1 and 2. Further studies and better data
are needed to explore these exciting issues in more detail.
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Fig. 1. The dependence of C = cos θ cos γ on the
penguin parameter d for various values of the observ-
able H. The “diamonds” with the error bars represent
the results of the “QCD factorization” approach [20]
for the presently allowed range of γ, as explained in
the text. The horizontal dotted lines correspond to
C = ± cos 36◦
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Fig. 2. The impact of corrections to (16),
parametrized through d′ = ξ d and θ′ = θ+∆θ, on the
contour in the d–C plane corresponding to H = 7.4

Let us now turn to the constraints on the direct CP
asymmetries (see also [7,25]). Before turning to the gen-
eral case, it is instructive to consider γ = 90◦. In this case,
we obtain

Adir
CP(Bd → π+π−)

∣∣
γ=90◦ = −

[
2 d sin θ

1 + d2

]
,

Adir
CP(Bs → K+K−)

∣∣
γ=90◦ = +

[
2 ε d′ sin θ′

ε2 + d′2

]
, (40)

and

H|γ=90◦ =
1 + d2

ε2 + d′2 . (41)

The CP asymmetries given in (40) take their extremal
values for θ = θ′ = ±90◦, and (41) allows us to determine

d:

d|γ=90◦ =

√
1 − ε2H

ξ2H − 1
, (42)

where we have also used d′ = ξ d. Consequently, we obtain

∣∣Adir
CP(Bd → π+π−)

∣∣max
γ=90◦ = 2

√
(1 − ε2H)(ξ2H − 1)

(ξ2 − ε2)2 H2

≈ 2
ξ
√
H

(43)

and

∣∣Adir
CP(Bs → K+K−)

∣∣max
γ=90◦ = 2 ε ξ

√
(1 − ε2H)(ξ2H − 1)

(ξ2 − ε2)2

≈ 2 ε
√
H. (44)
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Let us emphasize that (44) is essentially unaffected by any
corrections to the U -spin relation (16) for H = O(10); its
theoretical accuracy is practically only limited by (20),
which enters in the determination of H through (17).

In the general case γ �= 90◦, we employ (27) to elim-
inate the CP-conserving strong phase θ in (10). Follow-
ing these lines, we obtain Adir

CP(Bd → π+π−) as a func-
tion of d for a given value of γ. If we keep γ fixed, and
vary d within the allowed range corresponding to (32), we
find that |Adir

CP(Bd → π+π−)| takes the following maximal
value:

|Adir
CP(Bd → π+π−)

∣∣
max

= 2| sin γ|
√

a+ b2 cos2 γ
(1 + a)2 − 4(a − b)(1 + b) cos2 γ

, (45)

where a and b are given in (38) for ∆θ = 0 (see the com-
ment after (39)). In the case of Bs → K+K−, we obtain

|Adir
CP(Bd → π∓K±)

∣∣
max ≈ |Adir

CP(Bs → K+K−)
∣∣
max

= 2 ε ξ H | sin γ|
√

a+ b2 cos2 γ
(1 + a)2 − 4(a − b)(1 + b) cos2 γ

. (46)

For γ = 90◦, these expressions reduce to (43) and (44),
respectively. In Fig. 3, we show the dependence of (45) and
(46) on γ for the values of H given in (25). The shaded re-
gions correspond to a variation of the parameter ξ ≡ d′/d
within the interval [0.8, 1.2] for H = 7.4. In contrast to
(45), (46) is essentially unaffected by a variation of ξ, as
we have already noted above. The range for H given in
(25) disfavours large direct CP violation in Bs → K+K−
and Bd → π∓K± (see also [29]), which is also consis-
tent with the 90% C.L. interval of −0.22 ≤ Adir

CP(Bd →
π∓K±) ≤ +0.30 reported recently by the CLEO collab-
oration [14]. On the other hand, there is a lot of space
for large direct CP violation in Bd → π+π−. As can be
seen in Fig. 3, a measurement of non-vanishing CP asym-
metries |Adir

CP|exp would allow us to exclude immediately a
certain range of γ around 0◦ and 180◦, as values of γ corre-
sponding to |Adir

CP|exp > |Adir
CP|max are excluded. However,

in order to constrain this CKM angle, the mixing-induced
CP asymmetry Amix

CP (Bd → π+π−) appears to be more
powerful.

Before we turn to these bounds in the following section,
let us note that the observables of the decay Bd → π+π−
were combined with the CP-averaged Bd → π∓K± and
Bs → K+K− branching ratios in [6] and [7], respectively,
to derive constraints on the penguin effects in the extrac-
tion of the CKM angle α. In the present paper, we combine
the experimental information provided by these modes in
a different way, which appears more favourable to us. In
particular, we use the mixing-induced CP asymmetry of
the “gold-plated” mode Bd → J/ψKS as an additional
input [8], and derive bounds on the CKM angle γ. The
utility of Bd → π∓K± decays to control the penguin ef-
fects on CP violation in Bd → π+π− was also emphasized
in [30].

4 Constraining the CKM angle γ

In the following discussion, we assume that φd = 2β has
been measured at the B-factories through (12), which is
one of the major goals of these experiments. The presently
allowed range for β that is implied by the usual “indirect”
fits of the unitarity triangle is given as follows [26]:

16◦ ≤ β ≤ 35◦, (47)

with a preferred (central) value of β = 25◦, which is also
consistent with the present experimental result Amix

CP (Bd

→ J/ψKS) = − sin(2β) = −0.79+0.44
−0.41 of the CDF col-

laboration [31]. A measurement of this mixing-induced
CP asymmetry allows us to determine only sinφd, i.e.
to fix φd up to a twofold ambiguity. Several strategies
were proposed in the literature to resolve this ambigu-
ity [32]. In the B-factory era, an experimental uncertainty
of ∆ sinφd |exp = 0.05 seems to be achievable after a few
years of taking data, which corresponds to an uncertainty
of ∆φd = ±5◦ for the central value of φd = 50◦.

If we assume, for a moment, that there are no penguin
effects present in Bd → π+π−, i.e. d = 0, we would simply
have

Amix
CP (Bd → π+π−)

∣∣
d=0 = sin(φd + 2γ), (48)

as can be seen in (11). Since the unitarity of the CKM
matrix implies φd+2γ = −2α, this CP asymmetry is usu-
ally written as Amix

CP (Bd → π+π−)|d=0 = − sin(2α), and
would allow a direct measuerment of α. However, (48) is
the “generic” interpretation of this CP asymmetry, allow-
ing us to determine γ, if φd is fixed through Bd → J/ψKS.
In the case of large penguin contributions, this interpre-
tation of Amix

CP (Bd → π+π−) actually appears to be more
favourable than the usual one in terms of α, which was
employed, for example, in [6,7]. Since we definitely have
to worry about penguin effects in Bd → π+π−, as we have
pointed out in the previous section, we shall use the corre-
sponding mixing-induced CP asymmetry to contrain the
CKM angle γ in this section.

Concerning the search for new physics, γ is actually
the interesting aspect of the mixing-induced Bd → π+π−
CP asymmetry. If φd is affected by new physics, these ef-
fects could be seen, for example, by comparing the Bd →
J/ψKS results with the “indirect” range (47). Since this
channel is governed by b̄ → c̄cs̄ “tree” processes, its de-
cay amplitude is not expected to be affected significantly
by new-physics effects, and allows the determination of
φd even in the presence of physics beyond the Standard
Model. In order to search for indications of new physics,
the values of γ implied by the CP-violating effects in
Bd → π+π− could be compared with the “indirect” range
arising from the usual fits of the unitarity triangle, or with
theoretically clean extractions from pure “tree” decays,
such as Bd → D∗±π∓ or B → DK (see also the brief
discussion of new-physics effects in Sect. 3).

If we look at the expressions (10) and (11) for the
direct and mixing-induced CP asymmetries of the decay
Bd → π+π−, we observe that the CP-conserving strong
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Fig. 4. The dependence of the allowed range for
Amix

CP (Bd → π+π−) on the CKM angle γ for H = 7.4
and φd = 50◦

phase θ enters only in the form of cos θ in the latter case.
Consequently, using cos θ = C/ cos γ and (27), we obtain

Amix
CP (Bd → π+π−) = (49)

[ b sin(φd+2γ) cos γ−a sin(φd+γ)]+[ sin(φd+γ)+b sin φd cos γ]d2

[(b−a)+(1+b) d2] cos γ ,

where a and b are given in (38) for ∆θ = 0, i.e. the small
corrections due to ∆θ �= 0 have been neglected for simplic-
ity (see the comment after (39)). Since (49) is a monotonic
function of the variable d2, it takes its extremal values for
the minimal and maximal values of d given in (32); insert-
ing them into (49) yields

Amix
CP (Bd → π+π−)

∣∣
extr. = (50)

sin(φd+2γ)+a sin φd+2 w±[sin(φd+γ)+b cos γ sin φd]
1+a+2 w±(1+b) cos γ ,

where
w± = b cos γ ±

√
a+ b2 cos2 γ. (51)

In Fig. 4, we illustrate the resulting allowed range for
Amix

CP (Bd → π+π−) in the case of H = 7.4 and φd = 50◦
(shaded region). The impact of a deviation of the param-
eter ξ from 1 is illustrated by the dotted and dot-dashed
lines, which correspond to ξ = 0.8 and 1.2, respectively.
For a given value of γ, the allowed range for the mixing-
induced Bd → π+π− CP asymmetry is usually very large.
However, a measured value of Amix

CP (Bd → π+π−) would,
on the other hand, imply a rather restricted range for γ.
If we assume, for example, that Amix

CP (Bd → π+π−) = 0.4
has been measured, and take into account that the ex-
perimental value of εK implies γ ∈ [0◦, 180◦], we would
conclude that 41◦ ≤ γ ≤ 74◦ or 158◦ ≤ γ ≤ 170◦. Al-
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lowing ξ ∈ [0.8, 1.2], i.e. symmetry-breaking corrections of
20%, we would obtain the slightly modified ranges 39◦ ≤
γ ≤ 80◦ ∨ 155◦ ≤ γ ≤ 170◦ and 43◦ ≤ γ ≤ 71◦ ∨
160◦ ≤ γ ≤ 170◦ for ξ = 0.8 and 1.2, respectively. Since
the allowed region for d is enlarged (reduced) for smaller
(larger) values of H, the bounds on γ become weaker
(stronger) in this case.

Let us finally note that if in addition to a measure-
ment of H and Amix

CP (Bd → π+π−) direct CP violation
in Bd → π+π− or Bd → π∓K± is observed, we have
three independent observables at our disposal, which de-
pend on γ, d and θ. Consequently, we are then not only in
a position to constrain these “unknown” parameters, but
also to determine them [8]. Moreover, the normalization
|C| of the Bd → π+π− decay amplitude (see (7)) can be
extracted from the corresponding CP-averaged branching
ratio, and can be compared with theoretical predictions.
The Bd → π∓K± decays offer also alternative strategies
to determine γ and certain hadronic quantities, if these
transitions are combined with other B → πK modes [33].

5 Conclusions and outlook

The decays Bd → π+π− and Bs → K+K− provide inter-
esting strategies to extract the CKM angle γ and hadronic
penguin parameters at “second-generation” B-physics ex-
periments of the LHC era. In this paper, we have consid-
ered a variant of this approach for the “first-generation”
B-factories, where the Bs → K+K− decays are replaced
by Bd → π∓K± modes.

We have pointed out that the CP-averagedBd → π+π−
and Bd → π∓K± branching ratios allow us to fix contours
in the d–[cos θ cos γ] plane, which can be compared with
theoretical results for the Bd → π+π− “penguin param-
eter” d eiθ, for example with those of the “QCD factor-
ization” approach. Although it is too early to draw any
definite conclusions, it is interesting to note that the most
recent CLEO data are not in favour of an interpretation
of the “QCD factorization” results within the Standard
Model. This feature may be due to hadronic effects or new
physics. Further theoretical studies and better experimen-
tal data are required to investigate these exciting issues in
more detail.

Another interesting aspect of the recent CLEO re-
sults for the CP-averaged Bd → π+π− and Bd → π∓K±
branching ratios is that they imply upper bounds on the
corresponding direct CP asymmetries, which are given by
|Adir

CP(Bd → π+π−)|max ∼< 0.8 and |Adir
CP(Bd → π∓K±)|max

≈ |Adir
CP(Bs → K+K−)|max ∼< 0.3. The latter bound is re-

markably stable under U -spin-breaking corrections – in
contrast to the former one – and may also play an impor-
tant role to search for new physics.

If in addition to the CP-averaged Bd → π+π− and
Bd → π∓K± branching ratios mixing-induced CP vio-
lation in the former decay is measured, and the B0

d–B
0
d

mixing phase is fixed through Bd → J/ψKS, interesting
constraints on γ can be obtained. A further step in this
programme would be the observation of direct CP viola-
tion in Bd → π+π− or Bd → π∓K±, which would allow a

determination of γ, d eiθ and |C|. In this way, two of the
major goals of the B-factories – time-dependent analyses
of the benchmark modes Bd → J/ψKS and Bd → π+π−
– can be combined with each other to probe the CKM
angle γ and to obtain valuable insights into the world of
penguins.

Another important step would be a measurement of
the CP-averaged Bs → K+K− branching ratio, which
may be possible at HERA-B and Run II of the Teva-
tron. Using this observable, a certain dynamical assump-
tion concerning “exchange” and “penguin annihilation”
topologies can be avoided, which has to be made in the
case of Bd → π∓K±. The theoretical accuracy would then
only be limited by U -spin-breaking effects and would not
be affected by any final-state-interaction processes. The
final goal is a measuerment of the CP-violating observ-
ables of Bs → K+K−, which should be possible at LHCb
and BTeV. At these experiments, the physics potential of
Bd → π+π− and Bs → K+K− can be fully exploited,
and in addition to an extraction of γ at the level of a few
degrees, also interesting consistency checks of the basic
U -spin relations can be performed.
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